Received: August 3, 1987; accepted: August 4, 1987

PREPARATION OF [36c1]-CHLORINE LABELLED 1,1-DICHLOROTETRAFLUOROETHANE

L. ROWLEY, G. WEBB and J.M. WINFIELD

Department of Chemistry, University of Glasgow, Glasgow G12 800 (U.K.)

SUMMARY

The synthesis of $\begin{bmatrix} {}^{36}Cl \end{bmatrix}$ -chlorine labelled 1,1-dichlorotetrafluoroethane by the photolysis of 1-chloro-1,2,2,2,-tetrafluoroethane with $\begin{bmatrix} {}^{36}Cl \end{bmatrix}$ dichlorine is described.

INTRODUCTION

The vapour-phase fluorination of chlorofluoroethanes by hydrogen fluoride over chromia catalysts is a subject of current interest in these laboratories [1,2] and in order to determine the role of surface chlorine in these reactions, a chlorofluoroethane labelled with $[{}^{36}\text{Cl}]$ -chlorine was required. The obvious route to such compounds is by photolysis of a C-H bond in the presence of molecular chlorine [3,4] and the preparation of $[{}^{36}\text{Cl}]$ -CCl₂FCF₃ from CHClFCF₂ by this route is now reported.

SYNTHESIS

 $[^{36}C1]$ -chlorine labelled $CC1_2FCF_3$ is conveniently prepared by vapour phase, mercury-lamp photolysis according to equation (1)

0022-1139/88/\$3.50

© Elsevier Sequoia/Printed in The Netherlands

Photolyses of $CHClFCF_3$, $\begin{bmatrix} {}^{36}C1 \end{bmatrix} - Cl_2$ mixtures were performed in an evacuable Pyrex bulb (21) using various mole ratios and irradiation times (8-68 h). Optimum conditions were a 36h irradiation time with $\begin{bmatrix} {}^{36}C1 \end{bmatrix} - Cl_2$ in slight excess over that required by equation (1), $\begin{bmatrix} {}^{36}C1 \end{bmatrix} - Cl_2$ 205 Torr and $CHClFCF_3$ 195 Torr. The progress of a reaction was followed by monitoring i.r. spectral bands at 820 and 700 cm⁻¹ due to $CHClFCF_3$, and at 735 cm⁻¹ due to CCl_2FCF_3 . $\begin{bmatrix} {}^{36}C1 \end{bmatrix} -$ Labelled HCl and unchanged Cl_2 were removed by treatment with moist NaOH pellets and the chlorofluoroethane product isolated in >90% yield. Found mol. wt. (vapour density) 171.3 ± 1.6; $C_2Cl_2F_4$ requires 170.9.

The products and reactants are easily differentiated by their 19 F n.m.r. spectra, Table 1.

TABLE 1

¹⁹F N.M.R. spectra^a

	δ(CF ₃)	δ(CF ₂)	δ (CF)	³ J(FF)	² J(HF)	³ J(HF)
	[ppm]	[mad]	[ppm]	[Hz]	[Hz]	[Hz]
CC12FCF3	-84.2		-76,9	8		
CCIF2CCIF2		-71.1				
CHC1FCF ₃	-82.2		-157.0	10	48	4
CHF2CC1F2		-133.7 -73.8		7	55	2

^aChemical shifts w.r.t. external CCl₃F.

N.m.r. analysis of the product indicated that the mole ratio CCl_2FCF_3 : $CClF_2CClF_2$ was 19:1 compared with the mole ratio $CHClFCF_3$: $CHF_3CClF_5 = 24:1$ in the starting material.

The specific activity of $[^{36}C1]$ -CCl₂FCF₃ prepared by this route is typically 6.1 MBq mol⁻¹ corresponding to a radiochemical yield of approximately 33%. Specific activities were determined by liquid scintillation counting (Philips PW4700). A quenching curve, relating counting efficiency to the counter signal/channel ratio was determined by adding known quantities of CCl₂FCClF₂ to a standard volume (2cm³) of scintillator (Packard Insragel). This relationship was used to correct observed $\begin{bmatrix} 36\\ -count$ rates to an efficiency of 100%.

Specific count rates for reactant $[{}^{36}C1]-C1_2$ and product $H^{36}C1$ were determined by Geiger Muller counting using an experimentally determined self absorption curve after conversion of the compounds to $Ag^{36}C1$. The specific count rate of $H^{36}C1$ obtained from a 36h irradiation was $(6.5 \pm 0.2) \times 10^4$ count s⁻¹ (mol AgC1)⁻¹ compared with $(7.1 \pm 0.2) \times 10^4$ count s⁻¹ (mol AgC1)⁻¹ determined for $[{}^{36}C1]-C1_2$ prior to reaction. Corresponding count rates for a 68h irradiation were $(3.2 \pm 0.1) \times 10^4$ and $(3.9 \pm 0.1) \times 10^4$ count s⁻¹ (mol AgC1)⁻¹ for $H^{36}C1$ and $[{}^{36}C1]-C1_2$ respectively. These results suggest that C1-for-C1 exchange is a relatively unimportant route for $[{}^{36}C1]$ -chlorine incorporation in the product when shorter irradiation times are used.

ACKNOWLEDGEMENT

We thank the SERC for a studentship to L.R. and ICI plc Chemicals and Polymers Group for a gift of CHCIFCF, and for assistance with n.m.r. analysis.

REFERENCES

- J. Kijowski, G.Webb and J.M. Winfield, J. Fluorine Chem., 27 (1985) 213.
- 2 J. Kijowski, G. Webb and J.M. Winfield, Appl.Catal., 27 (1986) 181.
- 3 M. Hudlicky, 'Chemistry of Organic Fluorine Compounds', 2nd edn., Ellis Horwood, Chichester, 1976.
- 4 T. Tominaga and T. Aoyama, Radiochem. Radioanal. Lett., 31 (1977) 81.